# AI Paper Review Agent Architecture ## Overview Modular system for fetching, processing, and summarizing academic papers using LangChain. ### Core Components 1. **Data Acquisition Layer** - arXiv API Client (REST interface) - PDF Downloader Service - Metadata Extraction Module 2. **Processing Pipeline** - PDF Text Extractor (PyPDF2/Unstructured) - Semantic Chunker - Metadata Enricher (author institutions, citations) 3. **Analysis Engine** - LangChain Document Loaders - Multi-stage Summary Chain (Deepseek r1) - Technical Concept Extractor - Cross-Paper Insight Aggregator 4. **Storage Layer** - Relational Storage (PostgreSQL) - Vector Store (Chroma) - Cache System (Redis) 5. **Orchestration** - Agent Controller Class - Retry Mechanism with Exponential Backoff - Quality Assurance Checks ## Architectural Diagram ```mermaid graph LR A[User Query] --> B(arXiv API) B --> C[PDF Storage] C --> D{Processing Queue} D --> E[Text Extraction] E --> F[Chunking] F --> G[Embedding] G --> H[Vector Store] H --> I[LLM Analysis] I --> J[Report Generation] ``` ## Key Decisions 1. **Modular Design**: Components communicate via clean interfaces for easy replacement 2. **Batch Processing**: Asynchronous pipeline for parallel paper processing 3. **Caching Layer**: Reduces API calls and improves performance 4. **Fallback Strategies**: Multiple PDF parsers with automatic fallback 5. **Security**: Environment variables for credentials, encrypted storage ## Dependencies ```python langchain==0.2.1 arxiv==2.1.0 unstructured==0.12.2 openai==1.30.1 faiss-cpu==1.8.0 sqlalchemy==2.0.30