1.6 KiB
1.6 KiB
AI Paper Review Agent Architecture
Overview
Modular system for fetching, processing, and summarizing academic papers using LangChain.
Core Components
-
Data Acquisition Layer
- arXiv API Client (REST interface)
- PDF Downloader Service
- Metadata Extraction Module
-
Processing Pipeline
- PDF Text Extractor (PyPDF2/Unstructured)
- Semantic Chunker
- Metadata Enricher (author institutions, citations)
-
Analysis Engine
- LangChain Document Loaders
- Multi-stage Summary Chain (Deepseek r1)
- Technical Concept Extractor
- Cross-Paper Insight Aggregator
-
Storage Layer
- Relational Storage (PostgreSQL)
- Vector Store (Chroma)
- Cache System (Redis)
-
Orchestration
- Agent Controller Class
- Retry Mechanism with Exponential Backoff
- Quality Assurance Checks
Architectural Diagram
graph LR
A[User Query] --> B(arXiv API)
B --> C[PDF Storage]
C --> D{Processing Queue}
D --> E[Text Extraction]
E --> F[Chunking]
F --> G[Embedding]
G --> H[Vector Store]
H --> I[LLM Analysis]
I --> J[Report Generation]
Key Decisions
- Modular Design: Components communicate via clean interfaces for easy replacement
- Batch Processing: Asynchronous pipeline for parallel paper processing
- Caching Layer: Reduces API calls and improves performance
- Fallback Strategies: Multiple PDF parsers with automatic fallback
- Security: Environment variables for credentials, encrypted storage
Dependencies
langchain==0.2.1
arxiv==2.1.0
unstructured==0.12.2
openai==1.30.1
faiss-cpu==1.8.0
sqlalchemy==2.0.30